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Abstract
Icelandic seismic records continue to grow as numerous seismographs record data in real
time. A manual pick is a specific timestamp when an analyst thinks an earthquake arrived
first at the station based on the station’s data. Picking accurately when primary and
secondary waves (P- and S-phases) arrive at seismic stations from earthquakes/events is
used to estimate earthquake origins, which builds a geological, tectonic and magmatic
map under the surface that can vary over time. In the past, phase picking has been a
human task. However, with recent work using large, human-analysed datasets, machine
learning techniques like PhaseNet, EQTransformer and DeepPhasePick have been cre-
ated that boast precision and recall comparable to humans from data in North America,
central Europe, Asia and South America. I applied PhaseNet, DeepPhasePick and EQ-
Transformer to manually picked seismic records in and around Askja, Iceland by various
analysts. I found DeepPhasePick to have the lowest scoring with a recall below 15%,
which I attribute primarily to being trained and optimised to only 30,000 waveforms.
PhaseNet performed better than EQTransformer, with a 24.7%/5.9% improvement in
precision/recall for P-phase pickings and a 23.4%/19.1% improvement for S-phase pick-
ing. I also trained PhaseNet initially with shallow (≤ 8km depths) Askja events. Training
PhaseNet from random weights on 18,158 waveforms led to a 12%/36.9% increase in pre-
cision/recall for P-phases and a 2.7%/26% increase for S-phases. PhaseNet training also
shows improvements on deep (> 8km depths) earthquake events of more complex earth-
quake origin since they are part of Iceland’s ductile crust. The best PhaseNet model has
a precision/recall of 95.8%/94.5% for the P-phases and 82.4%/80.9% for S-phases in shal-
low earthquakes. QuakeMigrate uses information gathered from the seismograph’s Short
Term Average to Long Term Average ratio (STA/LTA) over time to pick phase arrivals
and locate earthquake origins. The most notable difference in picking is that QuakeM-
igrate arrival times have a 42.6% less precision and a 43.9% less recall than PhaseNet
for shallow event P-phases due to QuakeMigrate’s earlier picking times. I tried using
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PhaseNet’s continuous phase probabilities to replace an STA/LTA method for locating
events in QuakeMigrate. When comparing the two methods south of Askja, it was found
that the location uncertainties are smaller when using STA/LTA. Therefore, I suggest
that PhaseNet’s picking times are instead applied into phase association software followed
by earthquake locating software, like Non-Linear Location (NonLinLoc), for automatic
processing of seismic data because PhaseNet is designed for picking time accuracy and
does not contain explicit information on picking confidence. The Askja-trained PhaseNet
model also has potential uses in calculating phase polarisations and building velocity
models to better understand Iceland deformation.

1 Introduction
Iceland is a unique, ever-changing region of geology on top of the North Atlantic ridge
(figure 1). With the powerful 2010 eruptions of Eyjafjallajökull, south Iceland, grounding
107,000 flights over eight days, it is clear why there is great interest in understanding and
predicting Iceland’s seismic activity from an economic and safety standpoint [1].

The Northern Volcanic Zone (NVZ) is the surface response to the spreading rift be-
tween the Northern American and Eurasian tectonic plates. Volcanic systems are formed
by rising, low-viscosity, basaltic magma filling extra space. Askja volcano, situated in
the NVZ, is composed of three calderas - bowl-shaped structures formed by the evacu-
ation and collapse of magma storage regions during volcanic eruptions - the largest of
which (∼ 8km in diameter) formed roughly 11,000 years ago. Askja last erupted in 1961,
forming an 800m long fissure (a vent where magma can rise to the surface). Since the
1961 eruption, the long-term deformation trend has been an exponentially decaying rate
[2]. However, since August 2021, the trend has reversed and Askja has been rapidly
re-inflating.

Askja is microseismically active even when rifting is not occurring. It is thought to
be linked to deep crustal melt and hydrothermal activity in Askja’s volcano [3]. The
region has numerous surrounding seismic stations (figure 1) with data covering more
than 20 years. Therefore, Askja is a prime benchmark for machine learning models to
detect, pick and locate exotic seismic events in Iceland. Energy released by seismic events
is carried away from the point of origin (the earthquake’s ‘hypocentre’) in the form of
seismic waves. There are two broad classes of seismic body wave: the primary, or P-phase,
and the secondary, or S-phase, which exhibit longitudinal and transverse (shear) particle
motions, respectively. The arrival of these phases typically appear as sharp changes in the
amplitude in a seismograph recording. It is the timing of this first motion that analysts
record as the phase arrival or ‘pick’. More complex waves can also be observed, such as
those from reflections at rock boundaries, taking other paths to seismic stations. But,
these are attenuated because they travel further and are harder to discern from the other
phase signals. The majority of Askja’s earthquakes have a local magnitude scale ranging
between −0.5 and 3, the majority of which are below the threshold to which humans are
sensitive. Seismographs also record various levels of noise, depending on their location. A
primary source of noise in the area is called “secondary microseisms”, which are generated
by the coupling of energy/waves produced by wind-driven ocean storms with the solid
Earth. These are dominant at 0.1 to 0.3Hz. Noise can also be a 0.4 to 0.5Hz low frequency
signal, most notably caused by wind, oceans and human activity.

As seismic waves travel through the solid Earth, information about the geology and
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material properties of the Icelandic crust are encoded into the waveforms. They act
as probes inside the Earth. With the growth of seismic networks in Iceland, and the
consequent growth of digital archives of raw waveform data, building a reliable and auto-
matic way to process seismic data with analyst-level accuracy is desirable. QuakeMigrate,
created in 2020, is automatic seismic data-processing software that uses a waveform mi-
gration and a stacking algorithm to find corresponding events across seismic stations [4,
5]. It produces earthquake catalogues from raw seismic data, including their locations,
origin times, P- and S-phase arrival times and local magnitudes with estimated uncer-
tainties. QuakeMigrate gathers information about the P- and S-phase arrivals by using
the Short Term Average to Long Term Average ratio (STA/LTA) algorithm to produce
a continuous function over time that can be aligned and stacked (for example, see figure
13). There are, however, limitations to the STA/LTA approach, including: 1) STA/LTA
peaks earlier than the actual phase arrivals because of the finite window size used to
average. 2) Typically, the S-phase STA/LTA (made up of equal weightings from the N
and E seismic directions) still contains information on the P-phase arrival. 3) STA/LTA
is dependent on the Signal-to-Noise Ratio (SNR) of the data, creating a bias towards high
SNR signals. The SNR quantitatively describes how prominent an earthquake signal is
in a seismograph. With machine learning, learnt complex pattern recognition may lead
to greater phase pick precision and a reduction in SNR bias.

Recently, machine learning has been applied to more seismological data around the
world as data becomes available and vast, in the hope of developing improved automatic
seismic interpretations. PhaseNet, published in 2018, took similar techniques used in
image recognition and applied them to one-dimensional seismic data to build a continu-
ous P- and S-phase probability (for example, figure 5) [6]. The model was built to pick
phase arrivals during earthquake events in Southern California and reached new picking
accuracy and recall heights beyond other, non-machine learning methods. EarthQuake-
Transformer (EQT), published in 2020, takes a new, global approach, by training with a
larger data size from around the world. EQT has more trainable parameters and uses a
different model architecture [7]. The model first detects an event in the data as a window,
is then used as a guide for making phase picks. This is achieved by producing the same
continuous phase probabilities as PhaseNet. DeepPhasePick (DPP), published in 2021,
optimised the model architecture for P- and S-phase picking separately using data from
northern Chile [8]. Like EQT, DPP will detect then phase pick. They also introduce a
quantitative measure of the picking error by using the Monte Carlo dropout method [9],
where the picking stage is repeated with random neurons/nodes disconnected each time
to mimic Bayesian inference.

EQT and PhaseNet have been applied to other regions [10, 11]. There has also been
work done to retrain a model starting from its original using a small sample size [12].
With past advances in mind, testing how machine learning applies to Iceland’s seismicity
could offload labour-intensive tasks with greater reliability and precision than pre-existing
algorithms. In this project, I wanted to push the boundary of machine learning work
applied to Iceland by investigating some key questions:

• Are machine learning models applicable to pick microseismic phase arrival times in
Iceland?

• Does training on Iceland data beforehand improve a model’s phase picking ability
in the region?
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• How does transfer learning (training from a pre-trained model) compare to training
from initially random weights?

• Can machine learning models go further by using the continuous probabilities to
locate earthquakes in QuakeMigrate as a replacement for STA/LTA?

The data used, the phase picking and earthquake locating methods are described in
section 2. In section 3 I show the results found, in section 4 I discuss findings and in
section 5 I draw conclusions.

Figure 1: Simplified tectonic and network map around Askja, Iceland. IMO are Icelandic
Meteorological Office seismic stations. Light brown lines are roads, blue represents rivers
and lakes. Yellow shaded areas represent fissure swarms, volcanoes are outlined in black
and calderas are shown by ticked, black lines [3].

2 Method

2.1 Data
The seismic data was collected by the Cambridge Volcano Seismology Group (CVSG)
and consists of raw waveforms in and around Askja recorded across the seismic network.
Parts of the waveforms, between 2007 and 2015, have been picked for P- and S-phase
arrival times by analysts manually. The majority of seismic events originate between the
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most recently formed caldera, Öskjuvatn and Mt. Herðubreið in the north (figure 2). The
seismic events used contained a P-phase followed by an S-phase no more than 5s apart.
The waveforms are continuous, three-component (North (N), East (E) and vertical (Z)
motion) velocity seismographs resampled from 50Hz to 100Hz, if necessary, using the
Lanczos method, which were the inputs for machine learning models [13]. There are 94
unique seismic stations, with a range of Signal-to-Noise Ratios (SNRs) and earthquake
local magnitudes typical to Iceland for both testing and training a model on (figure 3).

Grades were assigned to each phase arrival pick by the analysts, with each grade
mapping to a picking error (measured in samples then translated to time). Manual picks
with an error > 0.1s were removed (majority of the errors left are 0.01s and 0.02s) because
a model’s picking time is said to be true positive if its distance away from a manual pick
(the residual time) is no further than ±0.1s (section 2.2 details further). CVSG, using the
software Non-Linear Location (NonLinLoc), estimated each event’s location and hence
its own estimated phase arrival times at each seismograph by calculating P- and S-phase
travel times [14]. If the manual pick time is more than 0.4s away from the NonLinLoc’s
estimated arrival time, then the waveform was excluded since it is likely that the manual
pick was inaccurate. The events are separated between deep (> 8km depth) and shallow
(≤ 8km depth) earthquakes because seismic events happening below 8km are in a ductile
part of Iceland’s crust, thought to be caused by fluid migration or melt to generate the
high strain rates necessary for fracture. In addition, deep events occur in short bursts
of time at high frequency, a so-called swarm, making the individuals phase arrival times
harder to untangle, so making a distinction is reasonable [15]. The catalogue of shallow
events was taken from Winder (2021), which allows for QuakeMigrate phase picking
results for an additional comparison (section 2.2.4) and local magnitude estimations for
each event.

The full dataset is comprised of 22,695 waveform snippets, split into training (18,158,
80%), validation (2,264, 10%) and test (2,273, 10%) sets via stratified sampling, as well
as 13,214 deep test samples.

2.2 Phase picking
PhaseNet, EQT, DPP and QuakeMigrate were all tested on the same 2,273 shallow events
and every PhaseNet model was tested on 13,214 deep events. Each sample was input as
a 120s window with the P-phase arrival centred to give more than enough padding. A
model’s phase pick is considered to be true positive when it is no further than 0.1s away
from the manual pick time. A false positive is counted for a pick further than 0.1s but
no further than 4s and false negative if no pick is made within the true positive window.
Picks are only counted between ±4s because there can be more than one seismic event
in a 120s window (see figure 4). The metrics adopted to measure the performance of
each model are precision, recall and F1 score as used by the creators of PhaseNet and
EQTransformer. Precision, recall and F1 score are defined below:

precision =
TP

TP + FP
, (1)

recall = TP
TP + FN

, (2)

F1 score = 2× precision × recall
(precision + recall)

, (3)
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Figure 2: Askja event catalogue, 2007-2020. The plot shows 155,282 events retained after
filtering QuakeMigrate’s preliminary locations. The events are scaled by magnitude and
coloured based on global covariance (a measure of location uncertainty) with deep and
shallow events coloured differently [3].

such that each metric varies between 0% and 100%, where TP, FP and FN are the true
positive, false positive and false negative counts respectively. F1 score combines the
precision and recall scores for an overall model score. Maximising the F1 score guides
towards precision and recalls of equal, highest values. To quantify the spread and precision
of picking times, the mean, µ, and the standard deviation, σ, were calculated using all
picks within ±0.5s from the manual pick.

2.2.1 PhaseNet

PhaseNet is a deep, convolutional neural network that aims to accurately pick P- and
S-phase arrival times from unfiltered, continuous seismic data. U-Net is a machine learn-
ing architecture used for image recognition [16]. PhaseNet is a modified U-Net style
architecture to better suit seismic data. PhaseNet still has a “U” shaped network archi-
tecture using four convolution steps followed by four deconvolutions to return back to
the same dimension as the input. PhaseNet has 268,000 parameters and was initially
trained on roughly seven million Northern California Earthquake Data Center (NCEDC)
waveforms. PhaseNet is input a 30s three-component window of seismic data normalised
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Figure 3: Askja’s shallow dataset properties. The top row shows the Signal-to-Noise Ratio
(SNR) distribution for P- and S-phases in the unfiltered shallow dataset, the bottom row
shows the distribution of earthquake local magnitudes. The SNR is calculated as the
ratio of the standard deviation of a 5s window proceeding to the standard deviation of a
5s window preceding the manual pick.

by its standard deviation and outputs a 30s continuous probability for P-, S- and noise
over time, P̂ (t), Ŝ(t) and N̂(t) respectively. P̂ (t) + Ŝ(t) + N̂(t) = 1 for all times, t, by
using a cross-entropy loss function. A PhaseNet pick time is given by a probability local
maximum when above a set probability threshold. If there are peaks within 0.5s of each
other, then shorter peaks are ignored until peaks are further than 0.5s. The probability
thresholds for P- and S-phases are chosen separately by testing values between [0.1, 0.9]
in 0.1 increments and choosing where the F1 score is maximum. If the best performing
probability threshold is on an edge case (0.1 or 0.9), then increments of 0.01 were looked
at.

PhaseNet was retrained starting from its model trained on Northern California data,
a process known as transfer learning or retraining. This could potentially improve the
robustness of the model and allow training with few samples. The waveforms were not
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Figure 4: Numerous seismic events in one waveform. A sample taken from the deep
earthquakes dataset, where the vertical lines represent manually picked phase arrivals,
vertical solid lines represent the manual picking times. The black lines are the Earth’s
velocity recorded by the seismograph data bandpass filtered between 2Hz and 20Hz for
clarity.

bandpass filtered to allow PhaseNet to distinguish noise. Each manual pick is represented
by a truncated Gaussian of width 0.3s, so that the local maximum represents the arrival
time (see figure 5). The 30s window of data is uniformly, randomly shifted such that the
truncated Gaussian is still within the window’s boundaries. This is to avoid PhaseNet
learning a false positional dependence within the waveform window. The learning rate
was set to a relatively small, constant value of 10−5. The small learning rate stops the
model from completely forgetting Californian training, known as “catastrophic forgetting”
[17].

PhaseNet was also trained from uniform, random parameter weights between [−L,L],
where L =

√
1/3001 to test the effectiveness of two different learning methods. This is

referred to as PhaseNet trained from scratch to distinguish the learning methods. The
learning rate was set to 0.1 and decayed by a factor of 10 every 50 epochs, where an
epoch is one pass through the entire training dataset in a random order. The initially
high learning rate suppresses memorisation of noisy data, while the learning rate decay
improves chances to learn complex patterns in the data [18].

In both training cases, the batch size is set to 20 and the trained model with the
lowest validation loss was used, since the validation dataset was tested against but not
trained on. This is to avoid the model memorising data, also called overfitting.
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Figure 5: Example manual pick. How manual picking times are converted into a target
probability over time (bottom row) for PhaseNet training [6].

2.2.2 EarthQuakeTransformer

EarthQuakeTransformer (EQT) is an artificial intelligence-based event detector and phase
picker that runs on 60s seismic data slices. The model uses transformers and global/local-
attention mechanisms to focus in on a smaller window where an event occurs, which the
phase picks are made on. EQT is more complex than PhaseNet, with more layer types as
well as a 41% greater parameter count of 372,000. The parameters were trained using one
million event waveforms and 200,000 noise-only waveforms. The data is sourced globally,
including a significant number of seismographs in North America, central Europe and
South Asia. Like PhaseNet, no region of Iceland was trained on originally.

EQT was tested on Icelandic data the same way as PhaseNet, except for bandpass
filtering the data between 1Hz and 45Hz as done in the original paper.

2.2.3 DeepPhasePick

DeepPhasePick (DPP) is a convolution neural network with two recurrent neural networks
for detecting and phase picking respectively. Hyperparameters, parameters that are set
before the model’s training, are varied and chosen to optimise the model’s performance
in Northern Chile. DPP’s original model was applied to shallow test waveforms, but
recall was always below 15% even after attempting various filterings, including bandpass,
highpass and lowpass. With less complete documentation than EQT and PhaseNet, it
was decided to continue work only on EQT and PhaseNet.

2.2.4 QuakeMigrate

QuakeMigrate implements an exhaustive scan through an archive of raw data for earth-
quake origin times and hypocentres. This is achieved by migrating the STA/LTA onset
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functions back into the search volume using an assumed or predetermined velocity struc-
ture. At every node in the search volume, these migrated onset functions are stacked.
Coherent peaks in the stacked onset functions localise the origin of a seismic event in
both space and time. A Gaussian is fitted to the P- and S-phases in time to get a picking
error uncertainty.

2.3 Locating
QuakeMigrate uses an onset function for P- and/or S-phases to represent continuous
information on seismic events. The onset functions are migrated onto a three-dimensional
grid of nodes, where each point is a potential hypocentre. The onset functions are aligned
according to a pre-determined travel time table to each seismic station and repeated
for a range of origin times, building a four-dimensional phase space (or “coalescence
function”). The base onset function provided by QuakeMigrate is based on the STA/LTA
algorithm, but the software has been designed as a framework for the broad class of
partial waveform information migration and stacking methods. It is straightforward to
incorporate alternative onset functions, provided they are stable and designed to produce
peaks around the onset of a seismic phase arrival.

Locating was applied to August 2014 volcano-tectonic events in Skútustaðahreppur,
∼ 30km south of Askja. The events are included in QuakeMigrate’s source code exam-
ples. They were located using the standard STA/LTA onset function and PhaseNet’s
continuous probabilities P̂ (t)/N̂(t) + 1 and Ŝ(t)/N̂(t) + 1 for P- and S-phases respec-
tively. The +1 is added because PhaseNet’s onset functions will constructively combine
for higher phase probabilities, as the coalescence is calculated based on the geometric
mean (a product of n values followed by nth rooting). Adding values below +1 is a
way of introducing destructive combinations of onset functions, potentially sharpening
the earthquake locating process as a post-processing optimisation. The node spacing
was changed from its default of 0.5 to 0.2km in all directions because PhaseNet’s onset
function can be narrower than STA/LTA, potentially placing the earthquake’s location
in between grid points.

3 Results

3.1 Training
Figure 6 shows the loss functions against epoch for both retraining and training PhaseNet
from scratch respectively. The training was performed on the High Performance Comput-
ing (HPC) in Cambridge using one NVIDIA A100-SXM-80GB GPU, taking ∼ 60 hours
for retraining and ∼ 20 hours for training from scratch.

3.2 Phase picking
The results for phase picking shallow events are tabulated in table 1, showing that the
greatest F1 score is PhaseNet trained from scratch. Figure 7 shows shallow waveform
examples with “bad” PhaseNet original predictions and how they change after training.

Varying the phase picking probability threshold will affect the precision and recall
of a model as it acts similar to a confidence level. Figure 8 shows the precision and
recall variance of PhaseNet before and after training to Iceland data. Figure 9 shows how

10



0 250 500 750 1000 1250 1500 1750 2000
Epochs

1.4

1.3

1.2

1.1

1.0
lo

g 1
0L

os
s

PhaseNet retrained
Training
Validation
Min. validation

0 100 200 300 400 500 600 700
Epochs

1.4

1.3

1.2

lo
g 1

0L
os

s

PhaseNet from scratch
Training
Validation
Min. validation

Figure 6: PhaseNet losses for retraining (left) and training from scratch (right). The
dashed black line labels the model with the lowest validation loss found for each case,
used in picking predictions.

SNR affects the S-phase significantly, with a decrease in pick scoring at high SNR values.
QuakeMigrate often picks earlier than the analysts’ picking times, shown in figure 10.

The results for applying machine learning models to the deep Askja events are shown
in table 2, showing similar improvement for both PhaseNet retrained and trained from
scratch. Figure 11 shows the picking time variation for PhaseNet before and after training
from scratch. There is a minimal correlation between the local magnitude and the picking
time difference and training causes a rise in picks made in the true positive window
(±0.1s). Figure 12 displays phase picking improvement after training PhaseNet from
scratch on a deep event waveform as other P- and S-phases are being recognised by
PhaseNet within the 120s window.

3.3 Locating
To illustrate how STA/LTA and PhaseNet’s probability widths and timings compare,
figure 13 shows the two onset functions on top of one another for an event in August
2014 at two different stations, showing how timings can vary and PhaseNet’s onset can
be narrower than STA/LTA. Figure 14 shows an event located using STA/LTA and
figure 15 shows the same event located using PhaseNet retrained. PhaseNet locating has
a greater uncertainty, but almost identical mean location.

4 Discussion
On shallow P-phase pick times, QuakeMigrate has the lowest overall F1 score because
about half of the picking times are more than 0.1s earlier than the manual pick time,
increasing both the false positive and false negative count. This is likely due to P-phases
greater SNR compared to the S-phase, which is made more prominent when most noise
is filtered out by bandpass filtering between 2 and 20Hz for STA/LTA. QuakeMigrate’s
S-phase picking is comparable to the PhaseNet retrained models.
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Model Prob.
threshold

Precision Recall F1 score µ(ms) σ(ms)

PN original 0.50 0.838 0.576 0.683 -50 68
PN retrain 0.40 0.915 0.892 0.904 -46 43
PN scratch 0.40 0.958 0.945 0.952 -36 39

EQT original 0.06 0.592 0.517 0.552 -100 71
QM (1) − 0.532 0.506 0.519 -86 63
QM (2) − 0.980 0.931 0.955 -86 63

PN original 0.10 0.797 0.549 0.662 -61 85
PN retrain 0.30 0.830 0.771 0.799 -53 71
PN scratch 0.30 0.824 0.809 0.816 -52 68

EQT original 0.30 0.563 0.358 0.438 -6 86
QM (1) − 0.822 0.782 0.801 -40 76
QM (2) − 0.965 0.918 0.941 -40 76

Table 1: Shallow event test results for P- (top) and S-phase (bottom). QuakeMigrate
(QM) has two scorings, one with the same true positive window of ±0.1s (1) and the
other with a true positive window of ±0.2s (2).

Model Prob.
threshold

Precision Recall F1 score µ(ms) σ(ms)

PN original 0.05 0.706 0.405 0.515 -4 109
PN retrain 0.20 0.874 0.680 0.765 3 72
PN scratch 0.20 0.872 0.690 0.770 15 69

PN original 0.03 0.706 0.400 0.512 18 132
PN retrain 0.20 0.736 0.557 0.634 23 115
PN scratch 0.20 0.724 0.559 0.631 31 123

Table 2: Deep event test results for P- (top) and S-phase (bottom).

EQT original performed the worst on shallow events. This could be an indication
that EQT’s complex architecture is not as suitable to the Iceland region because the
model may have overfitted to patterns in data from other regions, like North America,
central Europe and Asia, while the simplicity of PhaseNet’s design keeps the model
robust. Therefore, PhaseNet can perform better in Iceland, even with training only from
Northern California. However, EQT may still be a useful tool for Iceland phase picking
after retraining or even training from scratch by future work. EQT tries to separate each
seismic event into windows, this is especially problematic for close together swarm seismic
events in deep earthquake waveforms.

PhaseNet’s training shows significant improvements in phase picking for both shallow
and deep events. On shallow events, PhaseNet trained from scratch performs better than
retraining, which I attribute to an initially higher learning rate, allowing the model to
fit to Askja data better. The 18,158 waveforms used to train PhaseNet from scratch is
small in comparison to the seven million waveforms used in Northern California, but the
good performance suggests that a small, high quality sample size can go far in training
a model for a specific region. Moreover, if we assume each seismic event lasts for ∼ 5s in
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Figure 7: PhaseNet shallow waveform examples. A part of the test dataset. Each wave-
form is predicted before (left column) and after training from scratch (right column).

the 30s training waveforms, this gives 18158× 5s×100Hz = 1,089,480 data points which
are not noise. This is a comparable number to PhaseNet’s 268,000 trainable parameters,
which explains why PhaseNet, with an effective choice of learning rate, can still train from
random weights with fewer waveforms. Also, U-Net’s architecture has been specifically
designed for training with fewer samples by convolution steps, which pick out important
patterns in data using few parameters. The remaining ∼ 25s from each waveform gives
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Figure 9: PhaseNet from scratch scoring against Signal-to-Noise Ratio (SNR) on shallow
events. P-phase on left and S-phase on the right. The numbers in brackets shows the
total count (TP + FP + FN) in the SNR range.

ample opportunity to distinguish noise from events.
It was found that P-phase picking had a low dependence on the SNR, whereas the

S-phase had a stronger dependence. I believe that the SNR dependence is due to two
effects: a smaller training sample size for large SNRs and large SNR values making the
phase arrival easier to pick. S-phase is complicated further by the P-phase superimposed
on top of it, making every S-phase arrival more unique in comparison to P-phase arrivals.

Models perform worse on the events deeper than 8km. Interestingly, both trained
PhaseNet models perform the same within 1% on the deep events. The results indicate
that deeper earthquake swarms are harder for algorithms to discern and precisely pick
compared to the shallow events, but training on shallow events still improved their picking
scores. A better deep event picking performance could be tackled with further work to
try and train on deep events. However, the limitation with the the manual picks used in
this paper is that they are sporadically picked arrivals throughout years of seismic data,
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Figure 10: QuakeMigrate’s (QM) residual times (QM pick time−manual pick time) be-
tween ±0.5s on shallow events. Negative residual times represent an earlier picking than
the manual pick time.

and since the training window size is 30s, multiple phase arrivals can occur within each
window which have not been manually labelled. The same argument applies to shallow
seismic events too, but the events tend to be less frequent, i.e. more spaced out, so
the training data was a higher quality. To tackle this problem, I would suggest manually
picking every phase arrival within a short period of time, say one hour, at multiple seismic
stations and do this for various years of data. This gives a higher quality dataset because
no phase arrivals, to the best of the analysts’ abilities, are mistakenly labelled as noise
during training.

A limitation of PhaseNet is it does not quantify the picking error. One way to do
this could be applying DeepPhasePick’s Monte Carlo dropout technique, which may be
tuned to produce similar errors to the analysts. Since a pick’s probability over time is
supposed to be a Gaussian, another way of quantifying error could be to calculate the
difference between the pick probability over time versus the 0.3s truncated Gaussian that
PhaseNet trains to try output. Exactly how the difference maps to a picking error would
be something to explore further.

The volcano-tectonic earthquakes used in this study are typically modelled as point
source double-couple failures. The mode of failure of the originating fault, and its orien-
tation in space, can be determined from the spatial pattern of first arrival polarity data
(whether the first motion was ‘up’ or ‘down’). Making these observations, however, is an
equally time-intensive task like phase picking. With high precision phase pickings from a
machine learning model, data just beyond the picking time could be looked at to decide
the direction that the seismograph moves.

PhaseNet demonstrated the ability to locate events using QuakeMigrate software with
almost identical locations to STA/LTA. However, STA/LTA as an onset function has a
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Figure 11: PhaseNet residual time histograms. Top row shows PhaseNet original, bottom
row is PhaseNet trained from scratch. The left column shows shallow events, right column
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0.3)% of shallow test samples are shown, and (73.21±0.11)% deep test samples are shown.
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original’s prediction, right is PhaseNet trained from scratch.
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Figure 13: STA/LTA and PhaseNet trained from scratch comparison. One seismic event
on 24 August 2014 at DYJN station (top) and TOHR station (bottom). Zero samples
from DYJN station were included in the training dataset, 153 TOHR station samples were
included. STA/LTA and PhaseNet (PN) probabilities are normalised between 0 and 1.
The seismic data for the N and Z component are 2Hz to 20Hz bandpassed, normalised
between ±0.5 and centred about 0.5, with their relative sizes preserved. STA/LTA is
input 2Hz to 20Hz bandpassed data with average window sizes of 0.2s and 1s.

lower location uncertainty in almost all cases because QuakeMigrate has been originally
built around the STA/LTA. For example, STA/LTA has values varying between [0, inf)
compared to PhaseNet’s [1, 2] range. PhaseNet has no explicit measure of picking confi-
dence, whereas STA/LTA does have a built-in confidence based on the SNR. PhaseNet’s
onset function is also narrower than STA/LTA in some cases. Therefore, QuakeMigrate’s
grid spacing had to be reduced for PhaseNet to reach sharper coalescence maps such that
the event origin does not land in between grid points. This costs greater computational
time and a requirement for more RAM, which may not be available depending on the
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hardware being used. To avoid the computational time increase, a future implementation
for QuakeMigrate’s software would be a boxcar filter convolved with the onset functions
to correct for the finite grid spacings by incorporating information about the coalescence
values in between nodes. But, since PhaseNet has a high picking precision, in the future I
would suggest that PhaseNet’s estimated phase arrival times be input into a phase asso-
ciation software (for example, PhaseLink [19]) to combine phase picks thought to belong
to the same seismic event, which can then be input into NonLinLoc to locate earthquake
hypocentres and their uncertainties to compare against QuakeMigrate’s locating for the
same period of time.

5 Conclusion
Although Icelandic shallow events can originate from various earthquake mechanisms,
machine learning has demonstrated effective phase picking by training on the “gold stan-
dard” of picking microseismic events using analysts. With significantly fewer waveforms
than PhaseNet’s original California training, PhaseNet was trained successfully on Askja
events, reaching comparable or better scores than PhaseNet in the original paper for
Northern California. Therefore, the evidence suggests that training a model to a partic-
ular region can improve phase picking precision and recall, even with limited data. It is
found that a model trained with an initially high, decaying learning rate performs better
than a model trained with a low learning rate using the Californian-trained model as a
base. Retraining/transfer learning from a base model is limited because a low learning
rate is required to avoid “catastrophically forgetting” original information and overhaul-
ing to the retraining dataset. The results strengthens the idea that 18,158 samples is
sufficient to train PhaseNet from scratch in Askja and reach diminishing returns.

I suggest two ways of estimating PhaseNet’s picking errors: 1) Applying Monte Carlo
dropout, similar to DeepPhasePick, during testing and training. 2) Calculating the dif-
ference between the picking probability output and the target Gaussian.

Picking precision can reach over 90% for both phases at a cost to recall. The flexibility
of precision-recall dependence may find use in calculating event polarisations to estimate
fault angles without human biases and reduce laborious tasks. It also highlights potential
uses in estimating event origins and building velocity models under Iceland from phase
arrival times.

The work shown here paves the way for machine learning to locate earthquakes in
Iceland. PhaseNet successfully locates event origins in QuakeMigrate, but the location
uncertainty is greater than the STA/LTA method. Since PhaseNet’s P-phase picking time
precision for shallow events has a 42.7% increase over QuakeMigrate and PhaseNet’s lack
of measurable picking confidence, PhaseNet is more suited to associating phase arrival
times and then applying to seismic event locating software, like NonLinLoc, which may
reduce PhaseNet’s perceived high location uncertainties.
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7 Appendix

7.1 Code availability
7.1.1 Testing and training

Code used is available in the .zip file attached. The phasenet_setup_tom.py script
gathered waveforms and separated them into training, test and validation datasets. To
do this, it requires CVSG’s manual picks, which can be found in the AskjaManualPicks
directory. The script phasenet_eqt_tester.py was then used to apply a given PhaseNet
or EQT model on a created dataset and to produce figures 7 and 12.

To train PhaseNet, the source code script train.py was run on the HPC supercom-
puter. As of 5 May 2023, the data_reader.py script at lines 685 to 696 implemented a
5% chance of using the waveform as noise and not labelling the manual picks. This 5%
chance was removed during my training. Apart from this change, the training is the same
as PhaseNet’s original creators. The HPC was sent batch commands to queue and then
start PhaseNet training, two example batch files are phasenet_training_tom.wilkes3
and phasenet_training_scratch_tom.wilkes3 for retraining and training from scratch
respectively.

7.1.2 Locating with PhaseNet

QuakeMigrate’s source code is available online. The scripts phasenet.py and
__init__.py, created by Conor Bacon, are placed inside /quakemigrate/signal/onsets
to allow PhaseNet in the tensorflow framework to be used and applied for earthquake lo-
cating [20]. Then the scripts get_dike_intrusion_data.py, dike_intrusion_lut.py,
dike_intrusion_trigger_pn.py, dike_intrusion_detect_pn.py and
dike_intrusion_locate_pn.py can be run given a PhaseNet model directory, which can
be found in /from_scratch_model and /retrained_model.

7.1.3 Figures

Figure 3 was made using snr_reader.py and ml_reader.py. Figures 4, 7 and 12 were
made by phasenet_eqt_tester.py. Figure 6 was made using loss_plot.py. Figures 8
and 11 were made using residual_times_statistics.py. Figure 9 was made using
ml_scoring_plot.py. Figure 10 was created using QM_versus_PhaseNet_pickings.py
and QM_versus_PN_plot.py. Figure 13 was made using STA_LTA_and_PN_plot.py.
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